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In the framework of four-band envelope-function formalism, developed earlier for spherical semiconductor
nanocrystals, we study the electronic structure and optical properties of quantum-confined lead salt �PbSe and
PbS� nanowires �NWs� with a strong coupling between the conduction and the valence bands. We derive
spatial quantization equations, and calculate numerically energy levels of spatially quantized states of a trans-
verse electron motion in the plane perpendicular to the NW axis, and electronic subbands developed due to a
free longitudinal motion along the NW axis. Using explicit expressions for eigenfunctions of the electronic
states, we also derive analytical expressions for matrix elements of optical transitions and study selection rules
for interband absorption. Next we study a two-particle problem with a conventional long-range Coulomb
interaction and an interparticle coupling via medium polarization. We derive analytical expressions for an
effective direct Coulomb coupling and an effective coupling via medium polarization averaging corresponding
coupling energies over the fast transverse motion of charge carriers and then compute numerically the effective
couplings for the lowest-energy electron-hole pair in a PbSe NW of the radius R=5 nm in vacuum. The
obtained results show that due to a large magnitude of the high-frequency dielectric permittivity of PbSe
material, and hence, a high dielectric NW/vacuum contrast, the effective coupling via medium polarization
significantly exceeds the effective direct Coulomb coupling at all interparticle separations along the NW axis.
Furthermore, the strong coupling via medium polarization results in a bound state of the longitudinal motion of
the lowest-energy electron-hole pair �a longitudinal exciton� while fast transverse motions of charge carriers
remain independent of each other. For a PbSe NW of the radius R=5 nm, the binding energy of the longitu-
dinal exciton is found to be about 77.9 meV that is approximately two times smaller than the energy of spatial
quantization of the lowest-energy electronic states. Thus, the strong interparticle coupling via medium polar-
ization in quantum-confined lead salt NWs significantly modifies the single-particle electronic spectrum and
could result in essential modifications such Coulomb phenomena as impact ionization, Auger recombination,
and carrier multiplication.
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I. INTRODUCTION

Knowledge of the electronic states is needed for studies of
many physical properties such lower-dimensional quantum-
confined semiconductor systems as nanocrystals �NCs� and
nanowires �NWs�. The electronic states of NCs have been
studied analytically and numerically for both narrow-gap1

and wide-gap2 semiconductor materials with different bulk-
band structures, while the structural, electronic, and optical
properties of quantum-confined NWs have been computed
mainly with ab initio methods,3–7 such as density-functional
theory, pseudopotentials,8,9 and tight-binding methods.10–13

Theoretical studies of optical properties of NWs made of
wide-gap materials, such as GaAs, CdSe, and InP, have been
carried out14 in the framework of “particle-in-a-box” model
not accounting for an interband coupling between the con-
duction and the valence bands.

In this paper, in the framework of four-band envelope-
function formalism, we first obtain analytical expressions for
eigenfunctions of the electronic states of quantum-confined
narrow-gap lead salt �PbSe and PbS� NWs with a strong
coupling between the conduction and the valence bands and
then derive the electronic structure imposing the boundary
condition of vanishing envelope functions on the NW inter-
face. Thus, we generalize an approach developed by Kang
and Wise1 for spherical lead salt NCs to the case of NWs of
the cylindrical geometry. However, such a generalization is

not trivial because it requires new mathematical construc-
tions, specific for the cylindrical geometry, while in the case
of the spherical geometry, conventional mathematical tech-
nique developed in the Dirac theory of relativistic electron15

is employed.
Making use of explicit expressions for electronic eigen-

functions, we derive analytical expressions for matrix ele-
ments of the operator e ·p �where e and p are the light polar-
ization and the electron translation-momentum vectors,
respectively�, which determine optical absorption, and study
selection rules for interband absorption. Then, we study a
long-range Coulomb interaction in NWs. As in the case of
NCs,16,17 it contains a conventional Coulomb interaction, a
coupling between a charge particle and a medium polariza-
tion created by this particle itself, and finally an interparticle
coupling via medium polarization, i.e., a coupling between a
particle and a medium polarization created by the other par-
ticle.

The interaction of a charge particle with its own “image”
results in a particle repulsion from the NW interface that
effectively reduces the NW radius and thus slightly modifies
the single-particle electronic spectrum. Since a transverse
motion of charge carriers in the plane perpendicular to the
NW axis in sufficiently long NWs of the length L�R, where
R is the NW radius, is obviously much faster than a longitu-
dinal motion along the NW axis, we derive analytical expres-
sions for an effective direct Coulomb coupling and an effec-
tive coupling via medium polarization averaging the energy
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of electron-hole �e-h� coupling with the eigenfunctions of the
transverse motion of charge carriers.

Further numerical calculations for a PbSe NW of the ra-
dius R=5 nm in vacuum show that owing to a large magni-
tude of the high-frequency dielectric permittivity of PbSe
material ����PbSe�=23�, and hence, high dielectric NW/
vacuum contrast, the effective direct Coulomb interparticle
coupling is much weaker than the effective interparticle cou-
pling via medium polarization at all interparticle separations
along the NW axis.

Solving numerically an effective eigenvalue problem for a
relative longitudinal motion of the lowest-energy e-h pair,
we found a bound state of the longitudinal motion �a longi-
tudinal exciton�, and compute its binding energy, which is
found to be about 77.9 meV that is approximately two times
smaller than the energy of spatial quantization of the lowest-
energy electronic states. Therefore, in sharp contrast to the
case of NCs, the Coulomb interaction results in essential
corrections to the spectroscopy of quantum-confined lead salt
NWs, and could significantly modify such Coulomb phe-
nomena as impact ionization, Auger recombination and car-
rier multiplication.

II. FOUR-BAND ENVELOP-FUNCTION FORMALISM FOR
CYLINDRICAL GEOMETRY

In the four-band envelope-function formalism, total
electronic wave functions in lead salt semiconductor materi-
als are written as a product of the four �for two possible
directions of the electron spin in the conduction and the va-
lence bands� band-edge Bloch functions �ui� in the conduc-
tion �i=1,2� and the valence �i=3,4� bands, and four-
component envelope functions Fi

��� = �
i=1

i=4

Fi�ui� . �2.1�

Boundary conditions in quantum-confined NCs and NWs are
imposed on envelope functions which are found as solutions
of the eigenvalue problem

HF = EF �2.2�

with the eigenenergy E and the Hamiltonian of bulk lead salt
materials in a spherical approximation1

H = � �c�p� ��� · p�
��� · p� − �v�p� 	 . �2.3�

Here p=−i� is the wave-vector operator applying to the en-
velop functions, �= ��x ,�y ,�z�,

�x = 
0 1

1 0
�,�y = 
0 − i

i 0
�,�z = 
1 0

0 − 1
� �2.4�

are the Pauli matrices, �= �

m0
P �where m0 is the free electron

mass and P is the Kane momentum� is a parameter of the
interband coupling

�c�p� =
Eg

2
+

�2p2

2mc
, �v�p� =

Eg

2
+

�2p2

2mv

are the operators of bare �i.e., in the absence of the interband
coupling� electron energies in the conduction �c� and the
valence �v� bands, Eg is the energy gap, and mc,v are the
effective electron masses in the bands.

In the cylindrical coordinates �r ,	 ,z���r ,z�, where the Z
axis is directed along the NW axis, and r is the radius vector
in the XY plane perpendicular to the Z axis, it is convenient
to separate the transverse and longitudinal motions and to
rewrite the Hamiltonian as

H = Hxy + Hz, �2.5a�

where

Hxy = � �c�q� ��� · q�
��� · q� − �v�q� 	 �2.5b�

and

Hz = 
�2kz

2

2mc

���z · kz�

���z · kz� −
�2kz

2

2mv

� . �2.5c�

Here, the total wave vector operator p is represented as a
sum of the wave vector operator q=−i �

�r of the transverse
motion and the wave vector operator kz=−i �

�z of the longitu-
dinal motion. It is convenient to find first solutions of an
auxiliary eigenvalue problem with the Hamiltonian of the
transverse motion Hxy, and to study then the eigenvalue
problem �2.2� with the total Hamiltonian H.

III. AUXILIARY EIGENVALUE PROBLEM

The auxiliary eigenvalue problem

Hxy� = 
0� �3.1�

for a four-component bispinor �= � �
� �, where � and � are

two-component spinors, takes the form

�
0 − �c�q��� = ��� · q�� , �3.2a�

�
0 + �c�q��� = ��� · q�� . �3.2b�

In the absence of the interband coupling �particle-in-a-box
model�, �=0, solutions of Eqs. �3.2� are easily found to be

�,� = Jml
�qr�eiml	�, �3.3a�

where Jml
�qr� are the Bessel functions,

+ = 
1

0
�, − = 
0

1
�

are the spinors corresponding to two possible projections of
the electron spin sz= �

1
2 on the Z axis and ml=0, �1, . . . are

eigenvalues of the orbital angular-momentum operator of the
transverse motion l=r�q=−i�r�

�
�r � directed along the Z

axis.
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Taking into account also a free longitudinal motion with
the eigenfunction eikz, the eigenenergies in the particle-in-a-
box model

E = �+ 
Eg

2
+

�2p2

2mc
�

− 
Eg

2
+

�2p2

2mv
� � �3.3b�

correspond to states in the conduction �+� and the valence
band �−� with the total wave vector p=�q2+k2, where q and
k are wave vectors of the transverse and the longitudinal
motions, respectively.

The wave functions Eq. �3.3a� describe states with given z
projections of both spin and orbital angular momentum of
the transverse motion. However, because of the interband
spin-orbit coupling term in the Hamiltonian Hxy, these pro-
jections are not conserved separately, and only the projection
of the total angular momentum mj =ml+sz is conserved.

From functions eiml	 and spinors � ��=�� one can con-
struct two polar angular spinors

�mj
�	� =

iml

�2�
eiml	
1

0
�, ml = mj −

1

2
�3.4a�

and

�mj
�	� =

iml�

�2�
eiml�	
0

1
�, ml� = mj +

1

2
, �3.4b�

which are analogous, in some sense, to the angular spinors15

in the spherical geometry.
The polar angular spinors are eigenstates of all three an-

gular operators: the spin operator sz= 1
2�z with eigenvalues

sz= �
1
2 , the total angular momentum operator j= l+sz with

eigenvalues mj, and the operator l with two possible eigen-
values ml=mj −

1
2 and ml�=mj +

1
2 at a given value of the total

angular-momentum projection. Moreover, they are orthonor-
mal

�
0

2�

d	�mj

† �	��mj�
�	� = �mjmj�

, �3.5a�

�
0

2�

d	�mj

† �	��mj�
�	� = �mjmj�

�3.5b�

and orthogonal to each other, �mj�
†

�mj
=0, owing to orthogo-

nality of the spinors + and −.
The introduced polar spinors are related to each other by

the expressions

�mj
= − i�� · er��mj

, �3.6a�

�mj
= i�� · er��mj

, �3.6b�

where er�r /r=cos 	 ·ex+sin 	 ·ey, ex and ey are the unit
vectors along the X and Y axis, and hence,

� · er = cos 	 · �x + sin 	 · �y = 
 0 e−i	

ei	 0
� .

The relations �3.6� play an important role in further compu-
tations because they allow one to split the system of Eqs.
�3.2� into independent equations for the bispinor components
� and �.

As in the case of the spherical geometry,15 one can now
construct two different bispinors with a given total angular
momentum projection mj and uncertain values of the orbital
angular momentum and spin projections

�mj
= �Afml

�r��mj
�	�

Bfml�
�r��mj

�	� 	 �3.7a�

and

�mj
= �Cfml�

�r��mj
�	�

Dfml
�r��mj

�	� 	 , �3.7b�

where the coefficients and radial functions fml
and fml�

should
be found from solutions of the eigenvalue problem.

Inserting the expressions �3.7� into Eqs. �3.2� we find after
tedious but straightforward computations

�+,mj,q
=

1
�2
0

��
0 + �qfml
�r��mj

�	�

�
0 − �qfml�
�r��mj

�	� 	 , �3.8a�

�−,mj,q
=

1
�2
0

� �
0 − �qfml
�r��mj

�	�

− �
0 + �qfml�
�r��mj

�	� 	 �3.8b�

and

�+,mj,q
=

1
�2
0

��
0 + �qfml�
�r��mj

�	�

�
0 − �qfml
�r��mj

�	�
	 , �3.9a�

�−,mj,q
=

1
�2
0

� �
0 − �qfml�
�r��mj

�	�

− �
0 + �qfml
�r��mj

�	�
	 �3.9b�

in the conduction �+� and the valence �−� bands, which de-
scribe states with the eigenenergy


0 = + ��q
2 + �2q2 �3.10�

in the conduction band, and −
0 in the valence band. To
simplify the above expressions, we used a “mirror” symme-
try of the conduction and valence bands in PbSe and PbS
materials and set mc=mv�m. Therefore, here and hereafter
�q=

Eg

2 + �2q2

2m .
The radial functions

fml
�r� =

1

Nml

�Jml
�qr� −

Jml
�qR�

Iml
��R�

Iml
��r�	 , �3.11�

where Iml
��r� are the modified Bessel functions, �

=�q2+�0
2, and �0= 2m

�2
� �2

2mEg+�2, vanish on the NW inter-
face �r=R� at any wave vector q. The coefficients Nml

are
found from the normalization condition
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�
0

R

rdrfml

2 �r� = 1.

With normalized f functions, the bispinors are obviously nor-
malized to unity. The condition of self-consistency of simul-
taneous vanishing of both spinor components of the bis-
pinors on the NW interface results in the spatial quantization
equations for the transverse wave vector

�
0 + �q

��� − 
0

Jml
�qR�

Iml
��R�

=
�
0 − �q

��� + 
0

Jml�
�qR�

Iml�
��R�

�3.12a�

for the bispinors �+ and �−, and

�
0 + �Q

��� − 
0

Jml�
�QR�

Iml�
��R�

=
�
0 − �Q

��� + 
0

Jml
�QR�

Iml
��R�

�3.12b�

for the bispinors �− and �+. Here, ��=�q+ 2m
�2 �2, ��=�Q

+ 2m
�2 �2, and we use two notations to emphasize the existence

of two distinct sets of spatially quantized wave vectors, qn
and Qn�n=1,2 , . . .�, corresponding to the same total angular-
momentum projection mj.

As it must be expected, � bispinors are orthogonal to �
bispinors due to orthogonality of the � and � polar angular
spinors while orthogonality of bispinors corresponding to
states in different bands, �+, �− and �+, �−, with the same
mj is provided by the structure of energy factors in the ex-
pressions �3.8� and �3.9�.

The bispinors describing electronic states in the conduc-
tion band contain a contribution of the valence band and vice
versa. Correspondingly, the total wave functions Eq. �2.1�
contain contribution of the band-edge Bloch functions of the
conduction and the valence bands. While, in the absence of
the interband coupling, the second components correspond-
ing to the valence band in �+ and �+ bispinors and the first
components corresponding to the conduction band in �− and
�− bispinors vanish due to vanishing the factor �
0−�q at
�→0.

IV. LONGITUDINAL MOTION

The longitudinal motion along the Z axis additionally
mixes quantum states in the conduction and the valence
bands. Solutions of the eigenvalue problem with the total
Hamiltonian

H� = �Hxy + Hz�� = E� �4.1�

can be found as a linear superpositions of the eigenstates of
the transverse motion Hamiltonian Hxy.

Since the interband coupling term in the Hamiltonian Hz
mixes quantum states in the conduction and the valence
bands describing by different bispinors � and �, one can
look for solutions of the eigenvalue problem �4.1� in the
form

F = �A�+ + B�−�eikz, �4.2a�

G = �C�− + D�+�eikz, �4.2b�

where the coefficients should be found from solution of the
eigenvalue problem. Inserting these expressions into Eq.
�4.1� we finally find

F+ =
1

�2E
��E + 
�+ − �E − 
�−�eikz, �4.3a�

G+ =
1

�2E
��E − 
�− + �E + 
�+�eikz �4.3b�

for states in the conduction band with the eigenenergy

E = + ��p
2 + �2p2 �4.4�

and

F− =
1

�2E
��E − 
�+ + �E + 
�−�eikz, �4.5a�

G− =
1

�2E
��E + 
�− − �E − 
�+�eikz �4.5b�

for states in the valence band with the eigenenergy −E. Here,
the diagonal terms of the operator Hz �the kinetic energy of
the longitudinal motion� are included into the energies �p

=
Eg

2 + �2p2

2m and 
=��p
2 +�q2, where p2=q2+k2.

It is easy to see that the longitudinal motion does not
modify the structure of the spatial quantization Eqs. �3.12�
because it mixes bispinors with the same sets of the trans-
verse wave vectors qn and Qn. However, the energies �q and

0 in Eqs. �3.8�, �3.9�, and �3.12� must be replaced by
k-dependent energies �p and 
, respectively.

Thus, eigenstates of the total Hamiltonian H in the cylin-
drical geometry are characterized by the projection of the
total angular momentum mj = �

1
2 , �

3
2 , . . . on the Z axis and

the continuous wave vector of the longitudinal motion k
while the spatially quantized wave vectors qn and Qn of the
transverse motion are determined by Eq. �3.12a� for the bis-
pinors F� and by Eq. �3.12b� for the bispinors G�. The
bispinors are orthogonal to each other and normalized to
2���k−k��. Since there are two kinds of bispinors �F and G�,
the number of quantum numbers, which characterize eigen-
states of the Hamiltonian H, is equal to that in the absence of
the interband coupling �the particle-in-a-box model�, as it
must be expected.

Finally, corrections related to mixing of quantum states in
the conduction and the valence bands due to the longitudinal
motion are essential only at sufficiently large vectors k com-
parable to magnitudes of the transverse motion wave vectors
q and Q. While the densities of electronic states per unit
length of a NW exhibit obviously the Van Hove singularities
at k→0
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gq�E� =
1

L

dN

dE
�

1

23/2�

1

��2

m
�q + �2

� 
0�q�
E − 
0�q�

,

�4.6�

where N is the number of states, and 
0�q� are the subband-
edge energies determined in Eq. �3.10�.

V. ELECTRONIC STRUCTURE

For further comparisons, we consider first the electronic
structure in the framework of particle-in-a-box model, in
which the boundary condition ��r=R�=0 for the wave func-
tions Eq. �3.3a� results in a simple spatial quantization equa-
tion

Jml
�qR� = 0. �5.1�

The first three zeroes jml,n
for ml=0, �1, �2, where the sec-

ond index n=1,2 , . . . numerates zeroes of the Bessel func-
tions are approximately found to be

j0,1 = 2.4 j0,2 = 5.5 j0,3 = 8.7,

j1,1 = 3.8 j1,2 = 7.0 j1,3 = 10.2,

j2,1 = 5.1 j2,2 = 8.4 j2,3 = 11.6.

Then, the subband-edge energies �k=0� corresponding to
states with the orbital angular-momentum projection �ml are
given by

Eml,n
=

Eg

2
+

�2jml,n
2

2mR2 . �5.2�

The subband-edge states are additionally degenerate with re-
spect to two possible projection of the electron spin on the Z
axis. Thus, we find for the energies of subbands with the
orbital angular-momentum projection �ml and the continu-
ous wave vector k

E�,ml,n
�k� = � 
Eml,n

+
�2k2

2m
� , �5.3�

where the signs + and − correspond to the conduction and
the valence band, respectively. The subband-edge structure
in the conduction band is shown in Fig. 1.

The interband coupling completely lifts the degeneration
of subband-edge states. The results of numerical calculations
of the electronic structure in the conduction band for a PbSe
NW of the radius R=5 nm are presented in Table I and
illustrated in Fig. 2. For numerical calculations we adopted
the following parameters of PbSe material from Ref. 1: Eg
=0.28 eV, mc=mv=0.20m0, and �=0.31 eV·nm−1.

Although the orbital angular-momentum projection is not
a good quantum number, it is still convenient to characterize
quantum states by the orbital angular-momentum projection
of the first �second� spinor component of bispinors in the
conduction �valence� band. The projection of the total angu-
lar momentum mj is determined by the expressions mj =ml

+ 1
2 and mj =ml�− 1

2 . Thus, the lowest �upper� state in the con-
duction �valence� band corresponds to mj =

1
2 .

Finally, Table II summarizes magnitudes of the effective
energy gap in PbSe NWs of different radii computed in the
framework of four-band envelope function formalism �the
second row� and in the particle-in-a-box model, �=0, �the
third row�. It is easy to see that the interband coupling results
in significant size-dependent corrections to the electronic
structure computed within the framework of the particle-in-
a-box model. Note that the interband coupling decreases the
wave vector of the lowest-energy electronic states but in-
creases the effective energy gap while in lead salt NCs the
interband coupling reduces1 Eg

�.

ml= 0

ml = -1 ml = 1

ml = -2 ml = 2

ml = 0

(n=1)

(n=1)

(n=1)

(n=2)

FIG. 1. Band-edge energy levels �k=0� in the conduction band
in the absence of the interband coupling.

TABLE I. Energies of the spatially quantized states described by
bispinors �+�q� �ml=0, �1, �2� and �+�Q� �ml�=0, �1, �2� in
the conduction band. The states ml�= �1 and ml�= �2 are actually
not degenerate but the energy differences are on the order of a few
meV only.

State �ml� 0 +1 −1 +2 −2

Energy �
0� 0.22 0.32 0.33 0.43 0.45

State �ml�� 0 +1 −1 +2 −2

Energy �
0� 0.25 0.37 0.37 0.49 0.49

ml= 0

ml = +1

m'l = +1

m'l = 0

m'l = -1

ml = -1

m'l = -1

m'l = +1

ml = 0

ml = +1

ml = -1

m'l = 0

E*g

�+, Q
�+, q

�-, Q
�-, q

FIG. 2. Spatially quantized electronic states described by the
bispinors �+�q� and �+�Q� in the conduction band and mirror sym-
metric states in the valence band described by the bispinors �−�q�
and �−�Q�.
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VI. INTERBAND OPTICAL TRANSITIONS

The strength and selection rules of optical transitions in
NWs are determined by the matrix element

M = ���e · p��� , �6.1�

where e is the photon polarization vector and ��� are the total
electronic wave function defined in Eq. �2.1�.

For the case of interband transitions, the matrix element
Mcv within a given L valley of lead salt material is derived
by the method described in Ref. 1 as

Mcv = �e · ẑ�Pl� drdzFc
†�r,z���x � �z�Fv�r,z�

+� drdzFc
†�r,z��e · p�Fv�r,z� , �6.2�

where � stands for the direct product. To simplify further
expressions, we rewrite Eq. �6.2� as

Mcv = �e · ẑ�Pl�Fc��x � �z�Fv� + �Fc�e · p�Fv� .

In the first term, ẑ stands for one of four equivalent �111�
directions in the face-centered cubic lattice and Pl is the
matrix element of the longitudinal Kane momentum between
the band-edge Bloch functions. This term becomes isotropic
as result of summing over all four equivalent L valleys.

Inserting into the first term of Eq. �6.2� the expressions for
F+ and F− bispinors and using results of computations of
matrix elements in Appendix A we find

MF+F−

�1� = �e · ẑ�Pl�F+,mj�,k���x � �z�F−,mj,k
�

= − 2��e · ẑ�Pl



E
��k� − k��mj�mj

, �6.3�

where the ratio 
 /E can be written as




E
=��p

2 + �2q2

�p
2 + �2p2 .

This expression is valid only for transitions with the same
vectors of the transverse motion qn�=qn corresponding to
mj�=mj. Transitions with qn��qn are also allowed but their
matrix elements are smaller due to reducing the radial func-
tions overlap at different qn. The matrix elements for the
“direct” transitions from G− to G+ subbands differ in sign
only, MG+G−

�1� =−MF+F−

�1� while the matrix elements MF+G−

�1� and
MG+F−

�1� for allowed �mj�=mj� “indirect” transitions are small
at k�qn because they are proportional to a small factor
�k /Eg

�.

It should be emphasized that ��k�−k� function, which ex-
presses conservation of the Z component of the wave vector
in the system electron plus photon appears in Eq. �6.3� be-
cause we neglect the small photon wave vector. If the photon
wave vector is taking into account, � function takes the form
��k�−k−Kz�, where Kz is the projection of the photon wave
vector on the Z axis.

Thus, the first term of the matrix element is mainly deter-
mined by the longitudinal Kane momentum of bulk material
while envelope functions determine the ratio 
 /E �for tran-
sitions with qn�=qn� which equals unity at the subband edges
and is reduced when k grows up. Taking into account Van
Hove singularities in the density of electronic states at k
→0 we should conclude that the subband-edge absorption
significantly exceeds that at finite k.

On the contrary, the polarization-dependent second term
of the matrix element in Eq. �6.2� �which is obviously absent
in the particle-in-a-box model� is completely determined by
envelope functions. The matrix elements for the direct tran-
sitions MF+F−

�2� = �F+�e ·p�F−� and MG+G−

�2� = �G+�e ·p�G−� are pro-
portional to �k /Eg

�. Therefore, their contribution to the tran-
sition strength is small in comparison with that of the matrix
elements MF+F−

�1� and MG+G−

�1� . While matrix elements for indi-
rect transitions are found to be at small k

MF+G−

�2� = ��+,mj�
�e · q��−,mj

� , �6.4a�

MG+F−

�2� = ��+,mj�
�e · q��−,mj

� . �6.4b�

They do not vanish only for transitions with mj�=mj �1. Fi-
nally, matrix elements of the operator ez ·kz vanish owing to
orthogonality of states in the valence and the conduction
bands and absorption of light polarized along the NW axis is
determined by the matrix elements MF+F−

�1� and MG+G−

�1� only.

VII. COULOMB INTERACTION AND LONGITUDINAL
EXCITONS

Now we are able to consider a two-particle problem in
quantum-confined lead salt NWs. To solve the two-particle
problem is convenient to write the NW Hamiltonian in the
absence of an interparticle coupling in the second-
quantization representation as

H0 = �
q
� dk

2�
Eq�k��cq

†�k�cq�k� + hq
†�k�hq�k�� . �7.1�

Here, the operators cq
†�k��cq�k�� and hq

†�k��hq�k�� create �an-
nihilate� an electron and a hole with a wave vector k in a
subband with a spatially quantized wave vector q in the con-
duction and the valence band, respectively, and the summa-
tion is carried out over all the subbands. In what follows, we
restrict our consideration to the case when both electron and
hole belong to the lowest-energy subbands F+,1/2 and F−,1/2.
That allows one to omit the summation over other subbands
in Eq. �7.1�.

For a sufficiently slow longitudinal motion of charge car-
riers with k�q, where now q is the wave vector of the trans-
verse motion in the lowest-energy subbands, the expression
for the eigenenergy Eq. �4.4� is expanded as

TABLE II. The effective energy gap of PbSe NWs of different
radii calculated in the framework of four-band envelope function
formalism �the second row� and particle-in-a-box model, �=0, �the
third row�.

R �nm� 4 5 6 7 8

Eg
� �eV� 0.51 0.44 0.40 0.37 0.35

Eg
� �eV� ��=0� 0.42 0.37 0.34 0.32 0.31
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Eq�k� � 
0�q� +
�2k2

2mz�q�
=

1

2
Eg

� +
�2k2

2mz�q�
, �7.2�

where

mz�q� =
1

2

Eg
�

�q +
m

�2�2

m

is the effective mass of the longitudinal motion. Introducing
the Fourier transformed charge-carrier operators

cq�z� =� dk

2�
cq�k�eikz; hq�z� =� dk

2�
hq�k�eikz

one can rewrite the free Hamiltonian �7.1� as

H0 = Eg
� +� dzecq

†�ze�
−
�2

2mz

d2

dze
2�cq�ze�

+� dzhhq
†�zh�
−

�2

2mz

d2

dzh
2�hq�zh� . �7.3�

At k�q the transverse and longitudinal motions become
independent of each other. The energy factors �E−
 in Eqs.
�4.3� and �4.5� are small and the terms proportional to �E−

can be omitted. Then, the total bispinors F� differ from �
and � bispinors in the wave function of the free longitudinal
motion only, i.e., F+��+ exp�ikz� and F−��− exp�ikz�,
where the bispinors of the transverse motion are defined in
Eqs. �3.8� and �3.9�.18 Correspondingly, the operator of e-h
coupling is written as

V̂ =� dzedzhcq
†�ze�cq�ze�V�ze − zh�hq

†�zh�hq�zh� ,

�7.4a�

where the effective coupling energy is given by

V =� dredrh�+,1/2
† �re��+,1/2�re�U�re,ze;rh,zh�

� �−,1/2
† �rh��−,1/2�rh� �7.4b�

with the coupling energy U determined in Eqs. �B2�.
Then, the eigenvalue problem for a relative motion of the

lowest-energy e-h pair with the total Hamiltonian H=H0

+ V̂ reads

�2

mz

d2

d�2�eh��� + �
eh − V�����eh��� = 0, �7.5�

where �=ze−zh, 
eh=Eeh−Eg
�, and Eeh is the energy of the

pair. Due to the strong interband coupling, the effective mass
of the longitudinal motion, mz, in a PbSe NW of the radius of
5 nm, is found to be about a half of the effective electron
mass m, mz�0.51m.

A charge carrier confined in a cylindrical NW of the di-
electric permittivity �nw placed in a host of the permittivity
�h creates a medium polarization �an image charge� that re-
sults in an interaction between the charge and the image
charge. The expression for their interaction energy Uself is

presented in Appendix B �Eq. �B1��, and the results of nu-
merical calculations for a PbSe NW of the radius R=5 nm in
vacuum are plotted in Fig. 3. This single-particle term must
be included into the Hamiltonian �2.3� determining the
single-particle electronic spectrum. Since Uself�r� grows up
with r and diverges at r=R, the self-interaction repulses a
charge carrier from the interface that obviously results in
effective decreasing the NW radius and increasing �decreas-
ing� electronic energies in the conduction �valence� band.
However, the magnitude of Uself�r� reaches magnitudes of
confinement energies only at r�0.99R. Therefore, correc-
tions to the single-particle spectrum are inessential and can
be omitted.

As in the case of NCs,16,17 the energy of total e-h inter-
action U �Eq. �B2a�� is separated into the energy of direct
Coulomb coupling, UC �see Eq. �B2b��, and a term corre-
sponding to the interaction energy Upol �Eq. �B2c�� between
one charge carrier and a medium polarization created by the
second one. For the lowest-energy e-h pair, the direct Cou-
lomb �VC= �UC�� and polarization �Vpol= �Upol�� parts of the
total effective e-h coupling are plotted in Fig. 4 as functions
of the modulus of e-h separation along the NW axis normal-
ized to the NW radius. It is easy to see that due to a large
magnitude of the dielectric permittivity of PbSe material
���PbSe�=23�, and hence, high dielectric NW/vacuum con-
trast, the effective coupling via medium polarization Vpol es-
sentially exceeds the effective direct Coulomb coupling VC at
all e-h separations along the NW axis. Therefore, the latter
can be omitted in the eigenvalue problem Eq. �7.5�.

To avoid too tedious computations with the very compli-
cated function Vpol��� derived in Appendix C and plotted in
Fig. 4 �bottom�, it is convenient to replace Vpol��� by the
function

V��/R� = −
a

���/R�2 + b2
�meV� , �7.6�

which, at a�392.7 meV and b�3.3, well interpolates the
function Vpol���. Then, numerical computations show that the
lowest-energy electron and hole form a bound state �a longi-
tudinal exciton� with the exciton binding energy about 77.9
meV, 
eh�−77.9 meV, while fast transverse motions of
charge carriers remain independent of each other. The exci-

0.2 0.4 0.6 0.8 1

20
40
60
80
100
120
140

r/R

U
se
lf
(m
eV
)

FIG. 3. The self-interaction energy vs normalized radial coordi-
nate for a PbSe NW of R=5 nm; the constant term Uself�r=0�
=57.47 meV is extracted.
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tation energy of the longitudinal exciton, Eeh=Eg
�+
eh, is

then estimated to be about 362 meV, and hence, it is placed
approximately in the middle point between the NW effective
energy gap Eg

�=440 meV and the energy gap Eg
=280 meV of bulk PbSe material.

Finally, the size of the longitudinal exciton is estimated to
be about 10R=50 nm that justifies the approximation of a
slow longitudinal motion in comparison with the transverse
motion of charge carriers. The longitudinal exciton size is
comparable to the Bohr radius of Wannier-Mott exciton, aB
=46 nm, in bulk PbSe material. However, such large longi-
tudinal excitons can be destroyed by charge-carrier scattering
on impurities and other imperfections in NWs.19 Therefore,
the problem of longitudinal excitons and their role in the
spectroscopy of quantum-confined lead salt NWs requires
further theoretical and experimental studies.

VIII. CONCLUSIONS

In conclusion, in the framework of four-band envelope-
function formalism we have studied the electronic structure
and optical properties of quantum-confined lead salt NWs
with a strong coupling between the conduction and the va-
lence bands. Numerical calculations show that the interband
coupling completely lifts the degeneration of electronic
states and results in significant size-dependent corrections to
the electronic structure computed in the framework of
particle-in-a-box model. We have also derived analytical ex-
pressions for the matrix elements of the operator e ·p, which
determine optical absorption in NWs, and have studied se-
lection rules for interband absorption.

Finally, we have studied a two-particle problem with an
effective long-range Coulomb coupling averaging corre-
sponding interaction energy over a fast transverse motion of
charge carriers. Numerical calculations show that due to a
large magnitude of the dielectric permittivity of lead salt ma-
terials, the effective interparticle coupling via medium polar-
ization significantly exceeds the effective direct Coulomb
coupling.

Furthermore, the strong coupling via medium polarization
results in a bound state of the longitudinal motion of the
lowest-energy e-h pair �a longitudinal exciton� with the large
binding energy comparable to the energy of spatial quantiza-
tion of electronic states, and the size about 50 nm, which is
comparable to the Bohr radius of Wannier-Mott exciton in
bulk PbSe material. Thus, the strong Coulomb coupling in
lead salt NWs results in significant two- and many-particle
corrections to the single-particle electronic spectrum, and
could essentially modify such Coulomb phenomena as im-
pact ionization, Auger recombination and carrier multiplica-
tion.
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APPENDIX A: MATRIX ELEMENTS

Here, we compute the matrix elements of the operators
�x � �z and e ·p on the � and � bispinors, which are needed
to compute the first and the second terms in the expression
�6.2�, and to derive the selection rules for optical transitions.
Note that owing to orthogonality of the � and � spinors and
the structure of the operator �x � �z, “diagonal” matrix ele-
ments vanish, i.e.,

�†��x � �z�� = �†��x � �z�� = 0 �A1�

at any quantum numbers of the bispinors in both the conduc-
tion and the valence band. While nondiagonal matrix ele-
ments ��+��x � �z��−� and ��+��x � �z��−� are found to be

��+,mj�
��x � �z��−,mj

� = − �mj�,mj
, �A2�

��+,mj�
��x � �z��−,mj

� = �mj�,mj
, �A3�

where we used Eqs. �3.5�. Therefore, the matrix elements of
the operator �x � �z are diagonal in the quantum number mj
and correspond obviously to the direct interband transitions.
Note that these simple expressions are derived for transitions
between states with the same wave vectors qn�=qn.

On the contrary, owing to orthogonality of polar angular
spinors � and �, nondiagonal matrix elements
��+,mj�

�e ·p��−,mj
� and ��+,mj�

�e ·p��−,mj
� vanish at any quan-

tum numbers

�†�e · p�� = �†�e · p�� = 0. �A4�

While diagonal matrix elements ��+,mj�
�e ·p��−,mj

� and
��+,mj�

�e ·p��−,mj
� do not vanish and contribute to the strength

of optical transitions.
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FIG. 4. Energies of the effective direct Coulomb electron-hole
coupling VC �top� and the effective coupling via medium polariza-
tion Vpol �bottom� vs the normalized modulus of e-h separation
��� /R= �ze−zh� /R along the NW axis for a PbSe NW of R=5 nm.
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APPENDIX B: COULOMB INTERACTION

To our best knowledge, an expression for the Coulomb
interaction in NWs was derived for the first time in Ref. 14.
Here we present some basic expressions, which are used in
our computations, and derive an asymptotic expression for
particle-particle coupling at interparticle separations along
the Z axis, essentially exceeding the NW radius, �z−z���R.

As in the case of nanocrystals,16,17 the interaction energy
of two particles with the charges e and e� in a NW with the
dielectric permittivity �nw placed in a host medium with the
permittivity �h is separated into a self-interaction energy, i.e.,
the energy of interaction of a charge with its own image

Uself�r� =
2e2

�nw

1 −

�h

�nw
� �

m=−�

� �
0

� dk

2�
Qm�kR�Im

2 �kr�

�B1�

and the energy of interparticle coupling

U = UC + Upol, �B2a�

where

Qm�kR� = −
Km� �kR�Km�kR�

Km�kR�Im� �kR� −
�h

�nw
Km� �kR�Im�kR�

,

Im and Km are the modified Bessel functions, and Im� �z�
= d

dz Im�z�, Km� �z�= d
dzKm�z�.

The first term in Eq. �B2a� is the direct Coulomb coupling
energy

UC =
ee�

�nw

1
��r − r��2 + �z − z��2

=
4ee�

�nw
�

m=−�

�

eim�	−	���
0

� dk

2�
cos�k�z − z���

� �Im�kr�Km�kr�� , r � r�

Km�kr�Im�kr�� , r � r�
� �B2b�

while the second one is the energy of interparticle coupling
via a medium polarization, i.e., an interaction of one charge
with the medium polarization created by the second one

Upol =
4ee�

�nw

1 −

�h

�nw
� �

m=−�

�

eim�	−	���
0

� dk

2�

�cos�k�z − z���Qm�kR�Im�kr�Im�kr�� . �B2c�

At large interparticle separations �z−z���R, the leading
asymptotic term of the polarization part of the interparticle
coupling is found to be

Upol �
ee�

�eff

1

�z − z��
, �B3a�

where the effective permittivity is given by

1

�eff
=

1

�h
−

1

�nw
.

While the asymptotic of the direct Coulomb coupling reads

UC �
ee�

�nw

1

�z − z��
. �B3b�

APPENDIX C: EFFECTIVE ELECTRON-HOLE
COUPLING

Inserting into Eq. �7.4b� the expression for the energy of
direct electron-hole Coulomb coupling Eq. �B2b�, we find
for the effective Coulomb coupling

VC��� = −
4e2

�nwR
�

0

� dk

2�
cos�k���

0

1

x1x2dx1dx2

� D�x1�K0�kx1�I0�kx2�D�x2� , �C1a�

where

D�x� =
1

2
0
��
0 + �q�f0

2�x� + �
0 − �q�f1
2�x��

and we introduced dimensionless variables x1=re /R, x2
=rh /R, and �= �ze−zh� /R. Note that the angle integration in
Eq. �7.4b� selects the only nonzero term with m=0 from the
sum over m in Eq. �B2b�. Integrating20 over k in Eq. �C1a�,
we finally derive

VC��� = −
e2

�nwR
�

0

1

x1dx1x2dx2D�x1�D�x2�

�

2F1�3

4
,
1

4
;1;

4x1
2x2

2

�x1
2 + x2

2 + �2�2	
�x1

2 + x2
2 + �2

, �C1b�

where 2F1 is the hypergeometric function.
Analogous computations for the polarization part of the

effective e-h coupling result in

Vpol��� = −
4e2

�nwR

1 −

�h

�nw
��

0

� dk

2�
cos�k�� � Q0�k�J2�k� ,

�C2�

where J�k�=�0
1xdxD�x�I0�kx�.
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